THE EXPERIENCE OF RADIOBIOLOGICAL RESEARCH WITH HEAVY ION BEAMS AT ITEP

Nikolay Markov <u>markov@itep.ru</u>

Motivation: Heavy Ion Therapy

Durante & Loeffler, Nature Rev Clin Oncol 2010

Availability of Heavy Ion Therapy is increasing worldwide - 8 centers in operation, 3 under construction. Approx. 13000 patients were treated with C-ions since 1994 (http://www.ptcog.ch)

Key research areas in hadrontherapy

- 1. Moving targets
- 2. TPS: RBE modeling, reducing uncertainly
- 3. Secondary cancer risk
- 4. Individual radiosensityvity
- 5. Genetic background
- 6. Cancer stem cells
- 7. Hypofractionation

Motivation: Radiobiology for Space Research

1. Galactic Cosmic Rays (GCR) - high energy protons; highly charged, energetic atomic nuclei (HZE particles)

- 2. Solar Particles Events (SPE) medium and high energy protons
- 3. Trapped Radiation medium energy protons and electrons

87 %

12 %

1 %

06/10/2015

3

10

10⁰

Heavy ions for radiobiology in ITEP

Beam parameters

Depth-dose curve measurements

Silicon Semiconductor Detector (SSD)

		Parameters of SSD used in exp.		
- = 3	Detector type		Hi-p-type	
	Thick	mess of Si plate	0.2 mm	
	Thick	tness of sensitive layer	15 mkm	
	Sensi	tive area	1x1 mm ²	

SSD dose rate linearity in entrance region

Depth-dose curve measured with SSD

Results of SHIELD - HIT calculation

100 um

Absorbed dose determination

- 1. Measurements of the depth-dose curve
- 2. Position of the Bragg peak

3. Calculation of the ion beam energy E at the point z0 (with TRIM code)

4. Absorbed dose for a thin layer at the point z0
$$D = 1.602 \cdot 10^{-9} \left(\frac{dE}{dx}\right)_E \times \frac{N}{S} \times \frac{1}{\rho}$$

Uncertainty in absorbed dose

	Relative uncertainty, %	
Number of particles	≤ 3.5	
Field size	1	
Ion energy	1	
Stopping power	2 - 3	
Total	< 5	

Transversal distributions

For uniform irradiation a raster scanning system with a "pencil" beam was used. "Pencil" beam - Gaussian shape, with FWHM 2 mm

Radiobiological experiments "in vitro"

A	Human peripheral blood lymphocytes. For irradiation cells were placed in tubes (eppendorf 5 ml). Chromosome aberrations were analyzed in metaphases 48h after radiation exposure.
В	Breast cancer cell line Cal51 with normal karyotype. For irradiation cells were grown as monolayer and placed in 12.5 cm2 culture flasks. After irradiation chromosome aberration were analyzed
C	Chinese hamster ovary cells CHO-K1. For irradiation cells were grown as monolayer and placed in 12.5 and 25 cm2 culture flasks. After irradiation cell survival was measured with a colony assay.
D	Melanoma B16F10 cells. For irradiation cells were grown as monolayer and placed in 25 cm2 culture flasks. After irradiation cell survival was measured with a colony assay.

1. Eppendorf

2. Culture flasks

Methods of analysis

1-day

1. Analysis of chromosome aberration

5-day

3-day

DNA damages

Results of lymphocyte irradiation

Ryonfa Lee, Elena Nasonova, et al, Radiat. Environ. Biophys (2011) 50(3) 371-81

Results of CHO-K1 and Cal51 cells irradiation

6×

Summary of radiobiological experiments "in vitro"

	Cell type	Depth in water eq., mm	LET, kev/mkm	Dose range, Gy	RBE (x-ray)	RBE (60Co)
1	Lymphocyte	0	16	0 - 8	1.53 <u>+</u> 0.11	1.77 <u>+</u> 0.13
2	Cal51	0	16	0 - 4	-	2.02 ± 0.11
		82	40	0 - 4	_	3.63 ± 0.16
3	B16F10	23	20	0 - 10	-	1.45 ± 0.12
		85	44	0 - 8	-	2.46 ± 0.15
4	CHO-K1	0	16	0 - 8	1.65 ± 0.11	-
		82	40	0 - 5	2.27 ± 0.13	-

Radiobiological experiments "in vivo"

Further radiobiological research in ITEP

Proton linear accelerator I-2

Max. Energy, MeV	22.5
Pulse width, mks	2 - 30
Max. field size, mm	85
Particles per pulse, protons/cm ²	107 - 1011
Range in water, mm	~ 5
Min. LET, keV/mkm	2.4

- 1. RBE of low energy protons
- 2. Bystander effect
- 3. Micro-beams (single cell single particle)

